Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Metab ; 84: 101948, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677508

RESUMO

OBJECTIVE: Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. METHODS: We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active Ucp1 expression in adult mice. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. RESULTS: Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. However, Ucp1-CreERT2 showed no or only partial activation in these tissues of adult mice, indicating the potential for low or transient expression of endogenous Ucp1. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. CONCLUSIONS: Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.

2.
Nanoscale ; 16(2): 833-847, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38093712

RESUMO

Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.


Assuntos
Lesões Encefálicas , Nanopartículas , Acidente Vascular Cerebral , Humanos , Animais , Astrócitos/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas/metabolismo , Peptídeos/farmacologia , Encéfalo/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/farmacologia
3.
Biomolecules ; 13(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892137

RESUMO

Dysregulation of metabolic functions in the liver impacts the development of diabetes and metabolic disorders. Normal liver function can be compromised by increased inflammation via the activation of signaling such as nuclear factor (NF)-κB signaling. Notably, we have previously identified lysine demethylase 2A (KDM2A)-as a critical negative regulator of NF-κB. However, there are no studies demonstrating the effect of KDM2A on liver function. Here, we established a novel liver-specific Kdm2a knockout mouse model to evaluate KDM2A's role in liver functions. An inducible hepatic deletion of Kdm2a, Alb-Cre-Kdm2afl/fl (Kdm2a KO), was generated by crossing the Kdm2a floxed mice (Kdm2afl/fl) we established with commercial albumin-Cre transgenic mice (B6.Cg-Tg(Alb-cre)21Mgn/J). We show that under a normal diet, Kdm2a KO mice exhibited increased serum alanine aminotransferase (ALT) activity, L-type triglycerides (TG) levels, and liver glycogen levels vs. WT (Kdm2afl/fl) animals. These changes were further enhanced in Kdm2a liver KO mice in high-fat diet (HFD) conditions. We also observed a significant increase in NF-κB target gene expression in Kdm2a liver KO mice under HFD conditions. Similarly, the KO mice exhibited increased immune cell infiltration. Collectively, these data suggest liver-specific KDM2A deficiency may enhance inflammation in the liver, potentially through NF-κB activation, and lead to liver dysfunction. Our study also suggests that the established Kdm2afl/fl mouse model may serve as a powerful tool for studying liver-related metabolic diseases.


Assuntos
Hepatopatias , NF-kappa B , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Fígado/metabolismo , Inflamação/genética , Inflamação/metabolismo , Transdução de Sinais , Hepatopatias/metabolismo
4.
bioRxiv ; 2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37905088

RESUMO

Objective: Uncoupling protein 1 (UCP1), a mitochondrial protein responsible for nonshivering thermogenesis in adipose tissue, serves as a distinct marker for thermogenic brown and beige adipocytes. Ucp1-Cre mice are thus widely used to genetically manipulate these thermogenic adipocytes. However, evidence suggests that UCP1 may also be expressed in non-adipocyte cell types. In this study, we investigated the presence of UCP1 expression in different mouse tissues that have not been previously reported. Methods: We employed Ucp1-Cre mice crossed with Cre-inducible transgenic reporter Nuclear tagging and Translating Ribosome Affinity Purification (NuTRAP) mice, to investigate Ucp1-Cre expression in various tissues of adult female mice and developing embryos. Tamoxifen-inducible Ucp1-CreERT2 mice crossed with NuTRAP mice were used to assess active UCP1 expression. Immunostaining, RNA analysis, and single-cell/nucleus RNA-seq (sc/snRNA-seq) data analysis were performed to determine the expression of endogenous UCP1 and Ucp1-Cre-driven reporter expression. We also investigated the impact of UCP1 deficiency on mammary gland development and function using Ucp1-knockout (KO) mice. Results: Ucp1-Cre expression was observed in the mammary glands within the inguinal white adipose tissue of female Ucp1-Cre; NuTRAP mice. However, endogenous Ucp1 was not actively expressed as Ucp1-CreERT2 failed to induce the reporter expression in the mammary glands. Ucp1-Cre was activated during embryonic development in various tissues, including mammary glands, as well as in the brain, kidneys, eyes, and ears, specifically in epithelial cells in these organs. While sc/snRNA-seq data suggest potential expression of UCP1 in mammary epithelial cells in adult mice and humans, Ucp1-KO female mice displayed normal mammary gland development and function. Conclusions: Our findings reveal widespread Ucp1-Cre expression in various non-adipose tissue types, starting during early development. These results highlight the importance of exercising caution when interpreting data and devising experiments involving Ucp1-Cre mice.

5.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36355547

RESUMO

Jaeumgeonbi-Tang (JGT), a traditional herbal medicine, has been used to treat dizziness and vertigo in Korea and China for hundreds of years. The purpose of this study was to evaluate the pharmacological properties of JGT in chronic subjective dizziness (CSD) patients. A randomized, double-blind, parallel-group and placebo-controlled trial was performed with a total of 50 CSD patients. The patients were randomly assigned to one of two groups: JGT or placebo (n = 25 for each). All participants received the treatment (placebo or JGT, 24 g/day) for 4 weeks. We analyzed the serum levels of oxidative stressors, antioxidants, and stress hormones. Serum levels of lipid peroxidation, but not nitric oxide, were significantly decreased in the JGT group. JGT not only prevented the decline of serum total glutathione contents and total antioxidant capacity, but it also increased superoxide dismutase and catalase activities. Serum levels of stress hormones including cortisol, adrenaline, and serotonin were notably normalized by JGT treatment, but noradrenaline levels were not affected. Regarding the safety and tolerability of JGT, we found no allergic, adverse, or side effects in any of the participants. JGT showed beneficial effects on CSD patients by improving redox status and balancing psycho-emotional stress hormones.

6.
Elife ; 112022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107759

RESUMO

A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.


Prostate cancer is the fourth most common cancer worldwide, affecting over a million people each year. Existing drug treatments work by blocking the effects or reducing the levels of the hormone testosterone. However, these drug regimens are not always effective, so finding alternative treatments is an important area of research. One option is to target the 'integrated stress response', a pathway that acts as a genetic switch, turning on a group of genes that counteract cellular stress and are essential for the survival of cancer cells. The reason cancer cells are under stress is because they are hungry. They need to make a lot of proteins and other metabolic intermediates to grow and divide, which means they need plenty of amino acids, the building blocks that make up proteins and fuel metabolism. Amino acids enter cells through molecular gates called amino acid transporters, and scientists think the integrated stress response might play a role in this process. One of the integrated stress response components is a protein called General Control Nonderepressible 2, or GCN2 for short. In healthy cells, this protein helps to boost amino acid levels when supplies start to run low. Cordova et al. examined human prostate cancer cells to find out what role GCN2 plays in this cancer. In both lab-grown cells and tissue from patients, GCN2 was active and played a critical role in prostate tumor growth by turning on the genes for amino acid transporters to increase the levels of amino acids entering the cancer cells. Deleting the gene for GCN2, or blocking its effects with an experimental drug, slowed the growth of cultured prostate cancer cells and reduced tumor growth in mice. In these early experiments, Cordova et al. did not notice any toxic side effects to healthy tissues. If GCN2 works in the same way in humans as it does in mice, blocking it might help to control prostate cancer growth. The integrated stress response is also active in other cancer types, so the same logic might apply to different tumors. However, before GCN2 blockers can become treatments, researchers need a more complete understanding of their molecular effects.


Assuntos
Neoplasias da Próstata , eIF-2 Quinase , Animais , Humanos , Masculino , Camundongos , Aminoácidos/metabolismo , Aminoácidos Essenciais , Androgênios , eIF-2 Quinase/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/genética
7.
FASEB J ; 36(10): e22529, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36036554

RESUMO

Hepatic fibrosis occurs in response to prolonged tissue injury in the liver, which results in abnormal accumulation of extracellular matrix. Hepatic stellate cells (HSCs) have been suggested to play a major role in liver fibrosis. However, the molecular mechanisms remain incompletely understood. Sirtuin 6 (SIRT6), an NAD+ -dependent deacetylase, has been previously implicated in the regulation of the transforming growth factor ß (TGFß)-SMAD3 pathway that plays a significant role in liver fibrosis. In this work, we aimed to identify other important players during hepatic fibrogenesis, which are modulated by SIRT6. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ or WWTR1), key players in the Hippo pathway, have been implicated in the promotion of hepatic fibrosis. Our data show that HSC-specific Sirt6 knockout mice are more susceptible to high-fat-cholesterol-cholate diet-induced hepatic fibrosis than their wildtype counterparts. Our signaling analyses suggest that in addition to the TGFß-SMAD3 pathway, YAP and TAZ are also highly activated in the SIRT6-deficient HSCs. As it is not clear how SIRT6 might regulate YAP and TAZ, we have decided to elucidate the mechanism underlying the regulation of YAP and TAZ by SIRT6 in HSCs. Overexpression or knockdown of SIRT6 corroborates the role of SIRT6 in the negative regulation of YAP and TAZ. Further biochemical analyses reveal that SIRT6 deacetylates YAP and TAZ and reprograms the composition of the TEA domain transcription factor complex to suppress their downstream target genes, particularly those involved in hepatic fibrosis. In conclusion, our data suggest that SIRT6 plays a critical role in the regulation of the Hippo pathway to protect against hepatic fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Sirtuínas , Animais , Proteínas de Ciclo Celular , Cirrose Hepática , Camundongos , Fosfoproteínas , Fator de Crescimento Transformador beta
8.
Front Physiol ; 12: 691738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335299

RESUMO

Alcoholic steatohepatitis (ASH) is a progression hepatitis with severe fatty liver and its mortality rate for 30-days in patients are over 30%. Additionally, ASH is well known for one-fifth all alcoholic related liver diseases in the world. Excessive chronic alcohol consumption is one of the most common causes of the progression of ASH and is associated with poor prognosis and liver failure. Alcohol abuse dysregulates the lipid homeostasis and causes oxidative stress and inflammation in the liver. Consequently, metabolic pathways stimulating hepatic accumulation of excessive lipid droplets are induced. Recently, many studies have indicated a link between ASH and epigenetic changes, showing differential expression of alcohol-induced epigenetic genes in the liver. However, the specific mechanisms underlying the pathogenesis of ASH remain elusive. Thus, we here summarize the current knowledge about the roles of epigenetics in lipogenesis, inflammation, and apoptosis in the context of ASH pathophysiology. Especially, we highlight the latest findings on the roles of Sirtuins, a conserved family of class-III histone deacetylases, in ASH. Additionally, we discuss the involvement of DNA methylation, histone modifications, and miRNAs in ASH as well as the ongoing efforts for the clinical translation of the findings in ASH-related epigenetic changes.

9.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166249, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425214

RESUMO

Fatty liver disease is the most prevalent chronic liver disorder, which is manifested by hepatic triglyceride elevation, inflammation, and fibrosis. Sirtuin 6 (Sirt6), an NAD+-dependent deacetylase, has been implicated in hepatic glucose and lipid metabolism; however, the underlying mechanisms are incompletely understood. The aim of this study was to identify and characterize novel players and mechanisms that are responsible for the Sirt6-mediated metabolic regulation in the liver. We generated and characterized Sirt6 liver-specific knockout mice regarding its role in the development of fatty liver disease. We used cell models to validate the molecular alterations observed in the animal models. Biochemical and molecular biological approaches were used to illustrate protein-protein interactions and gene regulation. Our data show that Sirt6 liver-specific knockout mice develop more severe fatty liver disease than wild-type mice do on a Western diet. Hepatic Sirt6 deficiency leads to elevated levels and transcriptional activities of carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein 1 (SREBP1). Mechanistically, our data reveal protein-protein interactions between Sirt6 and liver X receptor α (LXRα), ChREBP, or SREBP1c in hepatocytes. Moreover, Sirt6 suppresses transcriptional activities of LXRα, ChREBP, and SREBP1c through direct deacetylation. In conclusion, this work has identified a key mechanism that is responsible for the salutary function of Sirt6 in the inhibition of hepatic lipogenesis by suppressing LXR, ChREBP, and SREBP1.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fígado Gorduroso/genética , Receptores X do Fígado/genética , Sirtuínas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Dieta Ocidental , Fígado Gorduroso/patologia , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Fígado/metabolismo , Camundongos Knockout , Fagocitose/genética , Triglicerídeos/sangue
10.
Antioxidants (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201527

RESUMO

Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), affects 25% of the global population. Despite the prevalence of NAFLD worldwide, effective therapeutics are currently lacking. Amomum villosum var. xanthioides (Wall. ex Baker) T.L.Wu & S.J.Chen (AX) is a medicinal herb traditionally used for treating digestive tract disorders in countries across Asia. We aimed to examine the pharmacological effects of the ethyl acetate fraction of AX (AXEF) against tunicamycin (TM)-induced ER stress in a NASH mouse model using C57/BL6J male mice. Following TM injections (2 mg/kg), the mice were orally administrated AXEF (12.5, 25, or 50 mg/kg), silymarin (50 mg/kg), or distilled water daily for 5 days, and the outcomes for fatty liver, inflammation, and oxidative stress were measured in serum or liver tissue levels. AXEF drastically attenuated hepatic ER stress-induced NASH as indicated by decreases in lipid droplet accumulations, serum liver enzymes, hepatic inflammations, and cell death signals in the hepatic tissue and/or serum levels. Interestingly, AXEF showed potent antioxidant effects by quenching reactive oxidative stress and its final product lipid peroxide in the hepatic tissue, specifically an increase in metallothionein (MT). To confirm the underlying actions of AXEF, we observed that AXEF increases MT1 gene promoter activities in the physiological levels. Collectively, AXEF showed antioxidant properties on TM-induced ER stress in a NASH mice model through the improvement of MTs.

11.
Nucleic Acids Res ; 49(10): 5726-5742, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023907

RESUMO

Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Códon/genética , Ontologia Genética , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Polirribossomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Inibidores da Síntese de Proteínas/administração & dosagem , Inibidores da Síntese de Proteínas/farmacologia , Quinazolinonas/administração & dosagem , Quinazolinonas/farmacologia , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
12.
Cell Mol Gastroenterol Hepatol ; 12(3): 921-942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33962074

RESUMO

BACKGROUND & AIMS: Sestrin 1/2/3 (Sesn1/2/3) belong to a small family of proteins that have been implicated in the regulation of metabolic homeostasis and oxidative stress. However, the underlying mechanisms remain incompletely understood. The aim of this work was to illustrate the collective function of Sesn1/2/3 in the protection against hepatic lipotoxicity. METHODS: We used Sesn1/2/3 triple knockout (TKO) mouse and cell models to characterize oxidative stress and signal transduction under lipotoxic conditions. Biochemical, histologic, and physiological approaches were applied to illustrate the related processes. RESULTS: After feeding with a Western diet for 8 weeks, TKO mice developed remarkable metabolic associated fatty liver disease that was manifested by exacerbated hepatic steatosis, inflammation, and fibrosis compared with wild-type counterparts. Moreover, TKO mice exhibited higher levels of hepatic lipotoxicity and oxidative stress. Our biochemical data revealed a critical signaling node from sestrins to c-Jun N-terminal kinases (JNKs) in that sestrins interact with JNKs and mitogen-activated protein kinase kinase 7 and suppress the JNK phosphorylation and activity. In doing so, sestrins markedly reduced palmitate-induced lipotoxicity and oxidative stress in both mouse and human hepatocytes. CONCLUSIONS: The data from this study suggest that Sesn1/2/3 play an important role in the protection against lipotoxicity-associated oxidative stress and related pathology in the liver.


Assuntos
Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Metabolismo dos Lipídeos , Fígado/metabolismo , Estresse Oxidativo , Sestrinas/metabolismo , Animais , Biomarcadores , Citoproteção/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/complicações , Inflamação/etiologia , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Fosforilação , Sestrinas/genética
13.
J Pers Med ; 11(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918059

RESUMO

In contrast to nonalcoholic fatty liver disease (NAFLD), metabolic-associated fatty liver disease (MAFLD) as an innovative definition can coexist with significant alcohol consumption. Massive clinical observations have indicated that high-fat/-calorie diet induced metabolic dysfunction along with alcohol intake deteriorates steatotic liver injury. To explore the potential mechanisms of fatty diet together with alcohol-induced steatohepatitis, we adopted a rat model by comparing a half-dose combination of fat diet (20%) and alcohol (10%) with their corresponding double dose of 40% fat diet and 20% alcohol for 8 weeks. The notable alterations in histopathology, acceleration in the oxidation parameters (ROS, NO and lipid peroxidation) and serum transaminase levels were shown in the concomitant group. Concomitant use of a high-fat diet and alcohol provoked hepatic endoplasmic reticulum stress, but did not activate mitochondria-mediated apoptosis parameters compared to F. In contrast, the notable activation of caspase-12 and nuclear translocation of CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) were observed only in the combined treatment group. The concomitant dietary fat intake and alcohol consumption lead to liver injury initially and later to steatohepatitis by the overdose of fat or alcohol, and in which the CHOP and caspase-12 might be involved in synergistic acceleration of steatohepatitis through a mitochondria-independent manner.

14.
Antioxid Redox Signal ; 35(9): 689-717, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33906425

RESUMO

Significance: Fatty liver disease is a major liver disorder in the modern societies. Comprehensive understanding of the pathophysiology and molecular mechanisms is essential for the prevention and treatment of the disease. Recent Advances: Remarkable progress has been made in the recent years in basic and translational research in the field of fatty liver disease. Multiple signaling pathways have been implicated in the development of fatty liver disease, including AMP-activated protein kinase, mechanistic target of rapamycin kinase, endoplasmic reticulum stress, oxidative stress, inflammation, transforming growth factor ß, and yes1-associated transcriptional regulator/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). In addition, critical molecular regulations at the transcriptional and epigenetic levels have been linked to the pathogenesis of fatty liver disease. Critical Issues: Some critical issues remain to be solved so that research findings can be translated into clinical applications. Robust and reliable biomarkers are needed for diagnosis of different stages of the fatty liver disease. Effective and safe molecular targets remain to be identified and validated. Prevention strategies require solid scientific evidence and population-wide feasibility. Future Directions: As more data are generated with time, integrative approaches are needed to comprehensively understand the disease pathophysiology and mechanisms at multiple levels from population, organismal system, organ/tissue, to cell. The interactions between genes and environmental factors require deeper investigation for the purposes of prevention and personalized treatment of fatty liver disease. Antioxid. Redox Signal. 35, 689-717.


Assuntos
Transdução de Sinais , Fatores de Transcrição , Estresse do Retículo Endoplasmático , Fígado/metabolismo , Oxirredução , Estresse Oxidativo , Fatores de Transcrição/metabolismo
15.
J Ethnopharmacol ; 260: 113102, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32544420

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yuk-Mi-Jihwang-Tang (YJT) has been popularly prescribed to treat aging related disorders over than hundreds of years in East Asia countries. AIM OF THE STUDY: To investigate possible modulatory actions of YJT on chronic restraint stress (CRS)-induced neurodegeneration on hippocampus neuronal injuries. MATERIALS AND METHODS: Mice were orally administered with YJT (100, 200, or 400 mg/kg) or ascorbic acid (100 mg/kg) before 4 h of stress for 28 days. Morris water maze task was completed from day 24th to 28th, and stress hormones and biochemical analyzes were measured. RESULTS: Four weeks of the CRS abnormally affected memory impairments by measurement of escape latency and time spent in the target quadrant. Additionally, neurotransmitters were also drastically altered in serum or hippocampus protein levels by CRS. Gene expressions for 5-hydroxytryptamine (5-HT) receptor, 5-HT-transport, and tryptophan hydroxylase were also altered, whereas YJT led to normalize the above alterations. Additionally, YJT also beneficially worked on endogenous redox system as well as inflammatory reactions in the hippocampal neurons. We observed that hippocampal excitotoxicity was induced by CRS which were evidenced by depletion of phosphor-cAMP response element-binding protein, brain-derived neurotrophic factor, nuclear factor erythroid-2-related factor 2, heme oxygenase-1 and abnormally increases of acetylcholine esterase activities in hippocampus protein levels; however, YJT considerably improved the above pathological conditions. CONCLUSIONS: Our findings supported YJT enhance memory function via regulation of hippocampal excitotoxicity-derived memory impairment, stress hormone, and endogenous redox, respectively.


Assuntos
Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Memória/efeitos dos fármacos , Degeneração Neural , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Mediadores da Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Transtornos da Memória/psicologia , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Restrição Física , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/psicologia
16.
Front Pharmacol ; 11: 447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32346367

RESUMO

INTRODUCTION: Stress is a well-known factor for inflammation in diverse organs/tissues. Stress also leads to liver injury, which was supported by clinical observations and animal studies. We herein investigated the hepatoprotective property of an herbal formula (called as CGplus) consisting of Artemisia gmelinii Weber ex Stechm. (syn, Artemisia iwayomogi Kitamura), Wurfbainia villosa var. xanthioides (Wall. ex Baker) Skornick. & A.D.Poulsen (syn, Amomum xanthioides Wallich), and Salvia miltiorrhiza Bunge against stress-induced hepatic damage. METHODS: Male BALB/c mice were orally administered water extract of CGplus (0, 50, 100, or 200 mg/kg) daily for 5 days, and then subjected to immobilization stress for 6 h on the 5th day. RESULTS: Acute immobilization stress elevated remarkably serum concentrations of stress hormones (corticosterone and adrenaline) and two hepatic injury parameters (ALT and AST), while these alterations were significantly attenuated by the administration of CGplus. The increases of oxidative parameters (ROS, NO, lipid peroxidation, and protein carbonyl) and deviation of IL-1ß and IL-10 in opposite directions in hepatic tissues were significantly normalized by CGplus. Pre-treatment with CGplus also notably ameliorated the abnormal activation of toll-like receptor 4 (TLR4), CD14, and lipopolysaccharide-binding protein (LPB) as well as infiltration of neutrophils in hepatic tissues. CONCLUSION: These results suggest that an herbal formula (CGplus) derived from traditional pharmaceutical theory has a potent protective effect against stress-induced hepatic injury via regulation of pro- (IL-1ß) and anti-inflammatory (IL-10) cytokines.

17.
Cell Mol Gastroenterol Hepatol ; 10(2): 341-364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32305562

RESUMO

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that is manifested clinically by an increase in hepatic triglycerides, inflammation, and fibrosis. The pathogenesis of NASH remains incompletely understood. Sirtuin 6 (Sirt6), a nicotinamide adenine dinucleotide-dependent deacetylase, has been implicated in fatty liver disease; however, the underlying molecular mechanisms in the NASH pathogenesis are elusive. The aims of this study were to elucidate the role of hepatic Sirt6 in NASH. METHODS: Wild-type, liver-specific Sirt6 knockout (KO), hepatic stellate cell (HSC)-specific Sirt6 knockout (HSC-KO), and Sirt6 transgenic mice were subjected to a Western diet for 4 weeks. Hepatic phenotypes were characterized and underlying mechanisms were investigated. RESULTS: Remarkably, both the liver-KO and HSC-KO mice developed much worse NASH than the wild-type mice, whereas the transgenic mice were protected from the diet-induced NASH. Our cell signaling analysis showed that Sirt6 negatively regulates the transforming growth factor ß-Smad family member 3 (Smad3) pathway. Biochemical analysis showed a physical interaction between Sirt6 and Smad3 in hepatic stellate cells. Moreover, our molecular data further showed that Sirt6 deacetylated Smad3 at key lysine residues K333 and K378, and attenuated its transcriptional activity induced by transforming growth factor ß in hepatic stellate cells. CONCLUSIONS: Our data suggest that SIRT6 plays a critical role in the protection against NASH development and it may serve as a potential therapeutic target for NASH.


Assuntos
Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Sirtuínas/deficiência , Proteína Smad3/metabolismo , Acetilação , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Estreladas do Fígado/patologia , Humanos , Fígado/citologia , Fígado/patologia , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Hepatopatia Gordurosa não Alcoólica/genética , Cultura Primária de Células , Sirtuínas/genética , Proteína Smad3/genética , Ativação Transcricional , Fator de Crescimento Transformador beta1/metabolismo
18.
Biomed Pharmacother ; 126: 110105, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203892

RESUMO

BACKGROUND: Chunggan extract (CGX) is an herbal formula used for the treatment of chronic liver disease in traditional Korean medicine. Many preclinical studies have suggested its therapeutic or preventive effects on liver fibrosis. To evaluate the efficacy and safety of CGX, we conducted a randomized controlled clinical trial of CGX in patients with liver fibrosis diagnosed by Fibroscan. METHODS: We enrolled 67 subjects at two hospitals with chronic liver disorders with a 5.5 ≤ liver stiffness measurement (LSM) score ≤ 16 kPa. Subjects were randomly assigned at a 1:1:1 ratio with stratification (with/without concomitant use of antivirals) and orally administered CGX (1 g or 2 g) or placebo twice daily for 24 weeks. The end point was the change in instantaneous elasticity of the liver assessed by Fibroscan before and after treatment. RESULTS: LSM scores were significantly decreased in both the CGX1 g (2.5 ± 1.7 kPa, p < 0.01) and CGX2 g (1.9 ± 2.0 kPa, p < 0.05) groups compared to the placebo (0.6 ± 1.6 kPa) group. The change was also significant in 35 subjects without concomitant use of antiviral agents in the CGX1 g group (placebo 0.1 ± 1.4 kPa vs. 2.7 ± 1.6 kPa, p < 0.01) but not in those with concomitant antiviral use (p > 0.05). No notable adverse events were present. CONCLUSION: CGX appeared to have a pharmacological effect against liver fibrosis. Further studies to confirm the results are needed in the future using a larger sample size.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Adulto , Idoso , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Monitoramento de Medicamentos , Feminino , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
19.
Sci Rep ; 10(1): 1478, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001745

RESUMO

As a neurotologic disorder of persistent non-vertiginous dizziness, chronic subjective dizziness (CSD) arises unsteadily by psychological and physiological imbalance. The CSD is hypersensitivity reaction due to exposure to complex motions visual stimuli. However, the pathophysiological features and mechanism of the CSD still remains unclearly. The present study was purposed to establish possible endogenous contributors of the CSD using serum samples from patients with the CSD. A total 199 participants were gathered and divided into two groups; healthy (n = 152, male for 61, and female for 91) and CSD (n = 47, male for 5, female for 42), respectively. Oxidative stress parameters such as, hydrogen peroxide and reactive substances were significantly elevated (p < 0.01 or p < 0.001), whereas endogenous antioxidant components including total glutathione contents, and activities of catalase and superoxide dismutase were significantly deteriorated in the CSD group (p < 0.01 or p < 0.001) as comparing to the healthy group, respectively. Serum levels of tumor necrosis factor -α and interferon-γ were significantly increased in the CSD participants (p < 0.001). Additionally, emotional stress related hormones including cortisol, adrenaline, and serotonin were abnormally observed in the serum levels of the CSD group (p < 0.01 or p < 0.001). Our results confirmed that oxidative stress and antioxidants are a critical contributor of pathophysiology of the CSD, and that is first explored to establish features of redox system in the CSD subjects compared to a healthy population.


Assuntos
Antioxidantes/metabolismo , Tontura/sangue , Estresse Oxidativo , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Catalase/sangue , Doença Crônica , Citocinas/sangue , Feminino , Glutationa/sangue , Humanos , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Oxirredução , Superóxido Dismutase/sangue , Adulto Jovem
20.
Hepatology ; 71(1): 76-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215672

RESUMO

Sestrin 3 (Sesn3) belongs to the three-member sestrin protein family. Sestrins have been implicated in antioxidative stress, adenosine monophosphate-activated protein kinase and mammalian target of rapamycin signal transduction, and metabolic homeostasis. However, the role of Sesn3 in the development of nonalcoholic steatohepatitis (NASH) has not been previously studied. In this work, we generated Sesn3 whole-body knockout and liver-specific transgenic mice to investigate the hepatic function of Sesn3 in diet-induced NASH. With only 4 weeks of dietary treatment, Sesn3 knockout mice developed severe NASH phenotype as characterized by hepatic steatosis, inflammation, and fibrosis. Strikingly, after 8-week feeding with a NASH-inducing diet, Sesn3 transgenic mice were largely protected against NASH development. Transcriptomic analysis revealed that multiple extracellular matrix-related processes were up-regulated, including transforming growth factor ß (TGF-ß) signaling and collagen production. Further biochemical and cell biological analyses have illustrated a critical control of the TGF-ß-mothers against decapentaplegic homolog (Smad) pathway by Sesn3 at the TGF-ß receptor and Smad3 levels. First, Sesn3 inhibits the TGF-ß receptor through an interaction with Smad7; second, Sesn3 directly inhibits the Smad3 function through protein-protein interaction and cytosolic retention. Conclusion: Sesn3 is a critical regulator of the extracellular matrix and hepatic fibrosis by suppression of TGF-ß-Smad3 signaling.


Assuntos
Dieta/efeitos adversos , Proteínas de Choque Térmico/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...